
Developing laminar f low in a semiporous 
two-dimensional channel with 
nonuniform transpiration 
M. M. Sorour, M. A. Hassab and S. Estafanous* 
A theoretical study of a hydrodynamically and thermally developing f low between an 
impermeable and a porous plate is presented. The f lowing stream is nonuniformly transpired 
through the porous plate, which is also subjected to a uniform heat flux. The impermeable 
wall is subjected to a heat loss coefficient to a constant-temperature atmosphere. The inlet 
to outlet suction ratio, the wall Reynolds number and the Prandtl number were the main 
system parameters. These parameters were considered in evaluating the axial velocity and 
pressure distribution, shear stresses, local wall and fluid temperature, and local Nusselt 
number which characterizes this f low pattern. 
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Introduction 

A channel may be said to be uniformly porous when its two 
walls are porous and the normal velocity at the wall is constant. 
On the other hand, nonuniform, semiporous channel flow 
implies that only one wall is porous and the normal velocity at 
this wall is not constant. Although there are a large number of 
publications dealing with various combinations of channel flow 
in porous ducts with suction or injection ~, flow in a semiporous 
long rectangular duct with nonuniform suction has not 
previously been investigated. 

The present investigation is devoted to a study of the 
hydrodynamic and heat transfer characteristics of developing 
flow in a heated, semiporous, long, rectangular channel. 
Furthermore, in this basic study the heated wall is the porous 
one, which simulates transpiration cooling. In general, 
configurations of flow with suction and injection are being 
increasingly used in modern technology. 

Donoughe 2 followed by Eckert et aP were the first to 
investigate the hydrodynamics of a fully developed flow in a 
semiporous channel with uniform suction. In addition, Horton 
and Yuan 4 investigated the fluid flow in the inlet region of a 
porous channel with uniform injection. 

Carter and Gill 5 investigated the effect of suction and 
injection on combined free and forced convection in vertical and 
horizontal channels, the flow being hydrodynamically and 
thermally developed. On the other hand, Terrill 6, Tsou 7 and 
Pederson and Kinney 8 studied the thermal entrance problem in 
a porous channel with uniform suction and injection for various 
thermal boundary conditions. Furthermore, Raithby 9 
investigated the development of the temperature field in the 
region of fully developed velocity for porous rectangular 
channels for both constant wall temperature and constant heat 
flux boundary conditions. Sorour and Hassab ~ 0 investigated a 
similar problem for a semiporous channel. Lastly, Rhee and 
Edwards ~t analysed a simultaneous thermally and 
hydrodynamically developing flow in a long, uniform, 
semiporous duct. 

Analysis 

Consider laminar, incompressible fluid flowing axially in a 
semiporous, long, rectangular close-ended duct as shown in 
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Fig 1. The flow is subjected to nonuniform suction from the 
porous wall side, such that the flow is completely withdrawn 
within the length of the duct. The porous wall is subjected to 
uniform heat flux while the impermeable wall is convective to a 
constant-temperature wall. In addition, the fluid is assumed to 
have properties which are independent of the temperature. 

An overall mass balance through the duct reveals 

uiB=VwaL (1) 

The dimensionless governing equations of continuity, 
momentum and energy can be deduced using the dimensionless 
quantities and Eq (1) to give 

3U OV 
~X ~ } ~  0 (2) 

(?U ~U {?P 1 {?2U 
U ~ +  V OY- eX ~ Rewa {?y2 (3) 

U {2X + Vc~ Y -Rew,Pr  ~y2 (4) 

in which the momentum equation in the Y-direction is 
neglected, and the second X-derivatives are also neglected. 

The boundary conditions imposed on Eqs (1), (2) and (3) are 

X = 0 ,  Y=Y, U = I ,  V=0, 0 = 0  

~0 
X = X ,  g=o,  U=0 ,  V=-Vwx,  - l (5) ? y  

30 
X = X ,  Y = I ,  U=O, V=O, ~3Y= --H~"(Ol--O'O 

X = L ,  Y = K  U=O, V=O 

~- L -I 

Impermeable solid wall l 

f, 

Y x 

- v w 0 ~  
--vw,n x 

Figure / A semiporous cavity with nonuniform suction 
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At any section X, the term &P/t3X can be considered a 
function of this distance only. Thus this quantity can be 
eliminated by differentiating Eq (2) partially with respect to Y. 
In addition, using Eq (2) we obtain 

02U (~2U 1 t~aU 
U ~ +  V t?y~ - Rewa dy3 (6) 

Introducing a stream function ff such that 

U -  
OY 

C~O (7) 
V = - - -  

~X 

into Eq (6), the resultant equation is 

a'q, ~ { a~, a~ a~q,a~= ° 
(8) 

63• / ~ e w a ~ c 3 ~ 2 ~  ovat3x/ 

and, correspondingly, the boundary conditions transform to 

X=0 ,  Y=Y, Y = I '  ~ = 0 ,  O = - I + Y ,  0 = 0  

t3~b t3~, t30 _ 1 (9) X = X ,  Y=0, ~ - = 0 ,  ~ = V M x ,  ~b=~bx, ~ =  

~'  °q'=0, ~,=0, 00 X = X ,  Y = l ,  ~ y= O ,  c3X ~ = - H u a ( O l - O a )  

--~(Vwo+ Vwm ) (10) Vwa- 1 

Vwx = Vwa + 2(1 - a ) X  (11) 

where a is the inlet suction ratio. 
Through using the definitions of the suction Reynolds 

numbers Rewo, Rewm and Rewa, it follows that 

Rewo = a Rewa (12a) 

Rewm = (2 - a)Rewa (12b) 

Rew:, = Rewo + (Rewm - Rewo)X (12c) 

N o t a t i o n  

a 
B 
b 
Cp 

H 
hua 
Hua 

K 
L 
NuL 

P, Pi 

P, Pi 

Pr 
Po 
Po* 

Qin 
Qx 
qw 

Re 

Rewa 

Rewo 

Rewx 

T, Ti 
T~, T2 

Inlet suction ratio /)wo//)wa 
Depth of the duct 
Width of the cavity 
Specific heat at constant pressure of the 
working fluid 
An elemental length in the Y-direction 
A heat loss coefficient 
A dimensionless heat loss coefficient 

_ huaB 

K 

Conductivity of the fluid 
Total length of the duct 
A local Nusselt number at the porous wall 
based on the mean temperature of the 
fluid inside the duct 
Pressure, inlet pressure 

f P--Pi'~ 
Dimensionless pressure | - ~ / ,  

\ PUi / 
dimensionless inlet pressure 
Prandtl number of the working fluid 
Power required to maintain the flow 
Dimensionless power defined by 
Po/pU~Qin 
Volumetric flow rate at inlet 
Volumetric flow rate at any section x 
Input heat flux per unit length of the 
porous wall 
Reynolds number of the inlet stream 

=ui(2B) 
V 

Average wall Reynolds number =vwaB 
V 

Wall Reynolds number at the inlet 

vwoB 
section of the d u c t -  

v 

Wall Reynolds number at location x on 

vwxB 
the porous w a l l -  

V 
Temperature, inlet temperature 
Temperature at location x on the porous 
and impermeable wall, respectively 

TEM 

U, U i 
U 
UAVX 

U, Vwa 

Uwo, Vwx, Vwm 

V 
Vwo, Vwx, Vwm 

x 
X 

Y 
Y 
q 

0 

01,0: 

Oa 
OMX 

0MAV 

0MAVX 

01AV, 02gv 

P 
T 

l"* 

~0 
~o 
q,N 

q,* 

Average fluid temperature at 0.98L from 
inlet 
Axial velocity, inlet axial velocity 
Dimensionless axial velocity = u/ui 
Dimensionless average sectional axial 
velocity 
Suction velocity and average suction 
velocity 
Suction velocity at x = 0, x = x, and x = L, 
respectively 
Dimensionless suction velocity- V/Vwa 
Dimensionless suction velocity at x = 0, 
x = x, and x = L; Vwo- Vwo/Vwa, 
Vwx-Vwx/Vwa, and Vwm ~Vwrn/Vwa 
Axial coordinate 
Dimensionless axial coordinate defined by 
x/L 
Transverse coordinate 
Dimensionless transverse coordinate-  y/B 
Axial coordinate on the impermeable wall 

T-Ti 
A dimensionless temperature-  

qw B/K 

Local dimensionless temperature of the 
porous and impermeable wall, respectively 
A dimensionless ambient temperature 
Dimensionless average mean temperature 
of the fluid inside the duct at the section x 
Dimensionless overall mean temperature 
of the total sucked stream 
Dimensionless overall average mean 
temperature of the fluid leaving the duct 
between section x = 0 and x = x 
Dimensionless average mean temperature 
of the porous and impermeable wall, 
respectively 
Kinematic viscosity of the fluid 
Density of the fluid 
Shear stress 

2 CU 
Dimensionless shear stress-- 2 - 

pU i Re OY 

A stream function 
An iterative value of the stream function 
A better approximation to the value of the 
stream function 
The previous step solution of the function 
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f f = - l + Y  

0 
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V~c 

1 

~ 0  

Figure 2 B o u n d a r y  c o n d i t i o n s  

1 
Vw== - {Rewo+(Re ,~-Rewo)X  } (12d) 

Rewa 

~x = - l + ~wa {Rewo + X  (Rewm-Rewo)} (12e) 

__! Rewa- ~(Rewo + Rewm) (12f) 

Fig 2 shows a schematic diagram of the problem as well as the 
boundary conditions given by Eq (9). It also illustrates the 
various linearly varying suction alternatives. 

S o l u t i o n  o f  t h e  m o m e n t u m  e q u a t i o n  

The two nonlinear terms of Eq (8) can be quasi-linearized. Let 
the superscript o denote a previous iteration, and A the 
difference from it, then 

~Y ~Y bY 

- F 

8X c~X 0X 
~3~ ~3~,o ~3A@ (13) 

~X ~ Y2 - ~X c~ Y~ { ~X ~ y2 

6~3t,b 633~ ° c33A¢ 
t~y3 ~.y3 c~y3 

Then neglecting second-order terms in A quantities gives 
~/  ~3~/ ~/o ~3~/ ~ /  ~31//o ~i//o ~3~//o 

t3Y #X tgY 2 -  bY t3X 6~Y 2 ~ 63Y t~X c~Y 2 8Y 6~X 63Y 2 

and (14) 
~qj ~3@ ~¢jo~3 

t~XdY 3 c~X~k ¢~¢ 633¢ ° c3¢°~3~ ° 
q 

~y3 dXctY s dX ~y3 

Eq (8) is now linearized, and is ready for solution. 
A finite difference technique is used for solving this equation. 

In this method of solution a backward difference approximation 
is used for the streamwise X derivatives and a central difference 
one for the cross-stream Y derivatives. Let a superscript * 
denote a dependent variable at the previous X-step (ie at Xi-  1), 
and let the subscript j denote a value at Y= Yj. Since the 
superscript o denotes the value at a previous iteration, a double 

superscript comprising o and * denotes the known solution at 
the previous X-step, ie ~b~*=~b~'. Thus the finite difference 
formulae for the terms of Eq (8) are 

~X 03~b~Y2 = f0J÷ '  - 20J + ~'~-' - 0"+' + 2 0 " -  0 " - ' ) \  A X H  2 , (15) 

t~31/I ~/lj+l--21/lj+l-~-2~//j_1--~//j_ 2 
b y  3 2H 3 

¢~4qj ~ j+2_4~j+  1 +6ff j_4ff j_  1 +t~j_2 
0 y4 H 4 

Substitution into Eq (8) gives 

A(j)qJ( j -  1) + B(j)~( j  - 1 ) + CIj)~(j)  

+ D(j)tp(j + 1) + E(j)t~(j + 2) = F(j)  (16) 

The constants A(i), B(i) . . . . .  F(j) are given by 

A(j)  = 2r-- Rewa{~k°(j)- ~k*(j)} 

B( j )=  -8r+Rewa{2~°( j  - 1 ) -  ~*(j + 1 ) -  ~b*(j- 1)} 

C(j) = 12r + Rewa { ~b°(j + 2) - ¢o(j + 2)} (17) 

D(j) = -- 8r-- Rewa{2~°(j + 1 ) -  ~J*(j + 1 ) -  ~J*(j- 1)} 

E(j) = 2r + Rewa { ~jo(j) _ ~.(j)} 

F(j) = Rewa[ ~°(j + 2)t~°(j)- {~o(j + 1)}2 

+ { ~o(j _ l )2 _ ~jo(j)t~o(j _ 2)}] 

where r = A X / H  z, and AX and H are the streamwise and cross- 
stream finite elements, respectively. 

The grid system used for solving the momentum equation is 
shown in Fig 3. In this figure the duct is divided into Np sections 
of incremental length AX each, and N o node points. 
Furthermore each section is divided into n r segments in the 
cross-stream direction, with Ny+ 1 node points. The successive 
application of Eq (16) at any section i yields a system of N r - 1 
simultaneous linear equations in Ny + 1 unknowns. In addition, 
through the use of the no slip conditions and the application of 
the momentum equation at the upper and lower walls, two 
additional equations are given. The following successive 
iteration scheme is designed for solving the system of linear 
equations produced by the successive application of Eq (16) at 
any section i and, hence, the complete solution at this section. 

Y = I  i = N v +  
i = N y  

i = N v  - 

j = 3  
i = 2  

Y=O i=1  

i = 0  
X=O 

I- 

, y  

X 

2 3 4 5  

~ * = 0  

(i + 2) 
~ ( j +  1) 

(J) 
~ 1 / . .  I) 
t ~  (/ - 2) 

i - 1  s 

~*= ~ 

1--  

X = I  

-I 

Figure 3 T h e  g r i d  s y s t e m  
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(1) Starting with the section i=  1, at a distance AX from the 
inlet section, the values of if* are already given from the 
boundary conditions (Eq (9)) for X = 0. 

(2) The values of fro can first be taken equal to the 
corresponding values of ~*. 

(3) Having the values of ~b ° and ~k* the constants given by Eqs 
(17) can be calculated. 

(4) Applying Eq (16) on the node points j = 2 ,  3, 4 . . . . .  Ny of 
the section under consideration produces a system of 
Ny - 1 simultaneous linear equations in N y -  1 unknowns, 
values of a new variable 0 N which is a better approximation 
to the solution than ~b °. 

(5) The system of the simultaneous linear equations produced 
is then solved simultaneously to yield the values of ~k N. 

(6) The relative differences 1 - ~o(j)/~N(j) are then calculated 
for all values of j = 2 ,  3 . . . . .  N r. 

(7) If any value of the differences calculated in item (6) exceeds 
the value of a specified accuracy, the values of ~o are made 
equal to the corresponding values of ~k N, and items (3) 
through (6) are calculated again. 

(8) This procedure continues until the value of any relative 
difference calculated in item (6) becomes less than the 
proposed accuracy. At this step the calculated values of ¢ N 
are considered the required solution, and given the 
notation ¢*. 

(9) The section under consideration now becomes a known 
one, and the values of~k* obtained in item (8) are then used 
to obtain the solution of the next section, at a distance AX 
from the former one. 

(10) Items (2) through (10) are then iterated until the values of 
~k* are calculated at all sections of the cavity for the given 
value of Rewa and the inlet suction ratio a. 

Now the stream function ~b is determined, the velocity field 
can be calculated by using Eqs (7) and the suitable 
approximations given by Eqs (15). Also, any other flow 
parameter can be determined by the corresponding finite 
difference approximation. In solving the system of simultaneous 
linear equations calculated at any section i the method of matrix 
partitioning was used ~ and r was taken equal to 5 for rapid 
convergence. 

The pressure distribution 

An alternative form of the momentum equation is 

t3u ¢?uv 1 ~p [ c~2u 02u'~ 
2U~x q pox  " 

(18) 

Neglecting the second-order x-derivatives and rearranging gives 

+ "  o~ 

Since the pressure gradient in the x-direction is a function of the 
streamwise direction only, the partial derivative can be 
substituted by the complete derivative. This makes the 
integration of Eq (19) possible and yields the axial distribution 
of both the pressure and the pressure gradient. 

dp 2p ~" c~u u(~3u _c~u 
"" d x -  B Jo U~xdY+B (20) \OYIy=B OYlr=o/ 

dP 2 fl ~U 1 I t3U 

jo 
(21) 

and through introducing the stream function defined by Eqs (8) 
this transforms to 

dP 2 f '  8¢* t32~'* - Y  1 t/t32¢ * t32~k * "~ 
d X = -  J0 ~ -  ~ c l  + R ~ w . ~ T r =  , -  dy2 Y=oJ (22) 

The right hand side of Eq (22) is quite sufficient to determine the 
values of the pressure gradient OP/OX at any section X, once the 
value of ¢* at this section is known. Simpson's rule is used for 
calculating the first term on the right hand side of Eq (22), and 

the following finite difference approximations are used for 
calculating the second term, which in fact represents the 
difference in the values of the shear stresses at the upper and 
lower boundaries respectively. 

020 * 1 {l lO*(Ny-3)-S60*(Nr-2)+l14O*(Nr-I)  
r = t = 1 2 H  2 

- 104$*(Nv) + 35~b*(Nr + 1)} (23) 

c~2~ * 1 {35¢*(1)- 104~,*(2)+ 1145"(3) 
~ ] y = o = 1 2 H  2 

- 56~k*(4) + 11 ~*(5)} (24) 

The axial pressure distribution can then be determined by 
integrating Eq (22), and using the following finite difference 
approximation: 

dP-P[x +ax- Plx (25) 
dX AX 

from which it follows that 

~P 
Plx +ax = Plx + ~ l  x + ax AX  (26) 

Once the pressure at section X, Plx, is known, and the pressure 
gradient at section X +AX,  OP/t~XIx+a x, is calculated from Eq 
(22), the pressure at section X + AX can be calculated by using 
Eq (24). Starting by PIx = 1 at the inlet section, the axial pressure 
distribution can be calculated by the successive substitution of 
Eq (24), and making use of Eq (20). Furthermore, the shear 
stress distributions can easily be calculated by using Eqs (21) 
and (22). 

The power required to maintain the motion of the flow can be 
represented by 

APo = - d p Q,: dx (27) 
(IX 

with 

Qx = fix Bb (28) 

where ~x is the average axial velocity at section x. 
An overall mass balance to a length x of the channel gives 

' f l  ux = ui - ~ Vwx dx (29) 

/)wa X2 .. ,3o, 

Combining Eqs (27) and (30) we obtain 

A P o = - ~ x  x ui- ~ a x + ( 1 - a ) ~  dx (31) 

Using the dimensionless parameters and the definition of the 
stream function we obtain 

dP 
APo* = ~ tp x dX 

('~ dP 
Po*= | ~ O x d X  

jo 

(32) 

(33) 

Solution of the energy equation 

In the solution of the energy equation the method used for 
approximating the derivatives was similar to the method 
described for approximating the X and Y derivatives in the 
momentum equation. The final equation can be written in the 
following form: 

B(j )O(j- 1) + C(j)O(j) + D(j )O(j + 1) = F(j) (34) 
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where the constants B(j), C(j), D(j) and F(j) are 

B(j) - Vj 1 
2H RewaPrH 2 

U~ 2 
C(j) = ~ - f  RewaPrH2 

D(j)= Vj 1 (35) 

2H RewaPrH 2 

Oo(j) 
F ( j ) =  U ( j ) -  

A X  

Eq (34) when applied to all the node points j = 1,2, 3 . . . . .  Ny of 
any section i produces a system of Ny simultaneous linear 
equations in N y + l  unknown values of the dimensionless 
temperature 0. Two additional equations can be obtained from 
the boundary conditions (Eq (9))• This produces a number of 
equations with an equal number of unknowns. It is to be noted 
that the method of matrix partitioning is also used for solving 
the system of simultaneous linear equations. 

Heat balance and Nusselt number 

At any section x, the bulk mean temperature OMx is calculated 
from 

q l x  = hua t t12 -~ Oa ] 

Con t ro l  vo l ume  

I "  - -X+  •X  

UAV  t X +~X  

~ 0MIX+~X  

Figure 4 
section X 

Impe rmeab le  wa l l  

S m 

T 
B 

.,  PoroT, wo, 

. w 

Q10x  

Derivation of the overall bulk mean temperature 0MAVX a t  

' i  OMX = UAVX U(Y)O(Y) d Y (36) 

By using Simpson's rule in the numerical integration of Eq 
(36) the bulk mean temperature is calculated. 

The local heat transfer coefficient is based on the porous wall 
temperature 01 and the bulk mean temperature O~x, and is 
defined as 

1 
NuL -- (37) 

O~ - OMX 
For this type of flow, the temperature of the transpired fluid is 

equal to the temperature of the wall from which transpiration 
occurs; see the Appendix. However, the overall average mean 
temperature of the sucked fluid, 0MAVX, can be obtained by the 
heat balance presented in Fig 4. 

= 1 - RewaPr c~_ (UAvOM)x __ Hua(02 _ Oa)x (38) 
qLgx 
qw 

where qLgx/qw is the part of heat carried by the transpired fluid 
per unit length. The total heat energy transported by the sucked 
fluid, QLgx can then be obtained by 

Q L g x  --  i x  qLgx dx = RewaPr(l - UAvx)OMAvX (39) 
qw J0 qw 

which leads to 

1 X 
- - ~  -- ( VAVX (:::)MX) 

0 M A V X -  1 - UAV X (Rew,Pr 

Hua ix(o2-Oa) dX} (40) 
Rewa Pr Jo 

R e s u l t s  and  d i s c u s s i o n  

Hydrodynamic  results 

The development of the axial velocity profile for different values 
of inlet suction ratio is presented in Fig 5 for Rewa=5 as a 
representative sample. The effect of suction in decreasing the 
axial velocity component as well as shifting its peak towards the 
porous wall with the axial distance is clearly evident, for all 
values of a. In addition, this trend is more significant for higher 
Rewa. 

0.0 0.5 

0 . 9 8  

1.0, 

I o.3 

0 0  • i i 

O.O 

Figure 5 
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2 
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~ ~ 0 9  0"9~ \ ~'~" 

1.50.0 0.5 1.0 

U/U, 
1.0 

i i 1 i 
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Velocity profiles for various values of the inlet suction ratio at Rewa = 5.0 
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Table I Maximum values of normalized velocity for Rwa=5 

a U/Oma x X-location Y- location 

0.0 1.735 0.98 0.26 
0 . 4  1 . 6 3 4  0.98 0.30 
0.8 1.567 0.98 0.34 
1.0 1.540 0.966 0.38 
1.5 1.557 0.350 0.36 
2.0 1.599 0.298 0.32 

0.0 . . . .  i , j , . ~  i ' ~ o l ~ a = 2 . o  

. ,  
a~ lm ¢0 .o f//: i/// 

-5°lip 11// -2 111/ 1 "5 

o. - 1 . 0  ~ 

-~oo' . . . .  I . . . .  ,I . . . .  I , , , ~' . . . .  , . . . .  I-1.5 
0.0 0.5 1.00.0 0.5 1.00.0 0.5 1.0 

X/L X/L X/L 

F igu re  6 A x i a l  d i s t r i b u t i o n  o f  t h e  p r e s s u r e  g r a d i e n t  f o r  d i f f e r e n t  

values of inlet suction ratio a 

To determine the characteristics of the flow pattern more 
closely, a normalized velocity U* defined by U*=-U/U is 
calculated at different system parameters. These calculations 
reveal that the flow is semiporous nonuniform flow may be 
classified into three regions, as follows. 

(1) For  0 < a <  1, the maximum normalized velocity increases 
continuously along the x-direction, and reaches its 
maximum value near the far end of the duct; thus no fully 
developed velocity profiles are attained. 

(2) For  a =  1, the maximum normalized velocity attains a 
constant value close to the exit section, ie fully developed 
velocity profiles are attained. 

(3) For  1 < a <  2, the maximum normalized velocity increases 
along the x-direction until it reaches a maximum value at 
some location, but decreases again beyond this location, ie 
no fully developed velocity profiles are attained. 

Table 1 shows the maximum values of the normalized velocity 
for different values of a and R,a = 5. 

This phenomenon is also illustrated in the axial distribution 
of the pressure gradient presented in Fig 6. The pressure 
gradient for various inlet suction ratios and three wall Reynolds 
numbers reveals that for a = 1 a linear relationship is established 
at some downstream axial distance. This is more clearly seen for 
low values of Rewa, where the linearity is sustained over a greater 
part of the length of the duct. Conversely, this linearity of the 
axial pressure gradient is not realized for a = 1. This supports the 
conclusion that a fully developed velocity region only eists for 
uniform suction. 

The nonexistence of a fully developed velocity profiles 
appears more clearly as Re, a increases. In addition, at these 
higher-values of Rewa pressure recovery prevails, especially for 
high values of a. Fig 7 presents the pressure distribution for 
various system parameters, illustrating another feature of this 
type of flow. This pressure recovery reduces the pumping power 
required to maintain the flow compared with its equivalent flow 
between two impermeable walls. Table 2 presents a sample of 
these results which indicate that the dimensionless pumping 
power decreases with increase in the inlet suction ratio and also 
the suction Reynolds number. 

The axial distribution of the shear stresses at the porous and 
impermeable walls for various values of inlet suction ratio and 
average wall Reynolds number are presented in Fig 8. At the 
porous wall, suction increases the negative values of shear 
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Table 2 Pumping power Po* for varying Rewa and a 

Po* 

a Rewa = 5.0 Rewa = 10.0 

0.0 0.9715 S e p a r a t i o n  
1.0 0.47136 0.13283 
2.0 0.18959 0.00371 
No suction 2.75690 1.55789 
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stresses at the inlet section but decreases them further 
downstream. On the other hand, suction decreases the shear 
stresses at the impermeable wall over the whole channel length. 

Suction causes a large portion of the flowing mass to flow in a 
narrow region near the wall from which the fluid is being sucked. 
Therefore, the velocity gradient in this region increases, and, 
consequently, so do the shear stresses. However, as the flow 
proceeds in the axial direction, the mass concentration near this 
wall, and hence the transverse velocity gradient, diminishes, 
which explains the reduction in the shear stresses at the porous 
wall in the far end region of the duct. 

The reduction of the shear stresses at the impermeable wall 
may cause separation when zero values are reached. Therefore, 
for a given value of the inlet suction ratio, there is a maximum 

Table 3 Maximum values of Rewa without separation at the 
impermeable wall 

value of the average wall Reynolds number, beyond which 
separation occurs. Table 3 indicates these maximum permissible 
values. 

The results of separation for uniform suction (a = 1) inside a 
semiporous rectangular duct agree with the results of previous 
investigations 2'8. However, nonuniform suction increases 
average permissible Reynolds number when a > 1. 

Thermal results 

In this section the effect of suction on the temperature 
distribution of the porous and impermeable walls, the exit fluid 
temperature, and the Nusselt numbers at the porous wall are 
presented for Reynolds numbers 2 < Rewa < 10 and for various 
inlet suction ratios 0 < a < 2. The first subsection deals with an 
adiabatic impermeable wall, while the second deals with a 
nonadiabatic wall. 

a Rewa 

0.0 7.1 
0.8 11.5 
1.0 13.2 
2.0 145 

Impermeable adiabatic wal l  

Fig 9 presents the axial temperature distribution of the porous 
and impermeable walls with various inlet suction ratios and for 
two representative values of Rewa. For higher inlet suction ratios 
the cooling effect is highest at the inlet section, and lowest at the 
exit sections. Generally, transpiration cools these walls 
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Table 4 Values of 01, 02 and 0MA V for different values of the inlet suction ratio and wal l  Reynolds number 

R e w a  = 2 R e w a  = 5 R e w a  = 1 0  

a 0MAV 01AV 02AV 0 MAV 01AV 02AV 0MAV 01AV 02AV 

0.0 0.68548 0.57369 0.22247 0.27384 0.27328 0.03538 Separation in the velocity field 
0.4 0.68535 0.58819 0.24180 0.27382 0.26295 0.03634 Separation in the velocity field 
0.8 0.68528 0.62058 0.27673 0.27382 0.26267 0.04135 0.13654 0.13530 0.00505 
1.0 0.68528 0.64748 0.30392 0.27383 0.26729 0.04638 0.13763 0.13561 0.00606 
1.5 0.68546 0.78314 0.43779 0.27399 0.30373 0.07690 0.13637 0.14981 0.01318 
2.0 0.68733 1.66288 1.31182 0.27494 0.53998 0.29512 0.13628 0.28072 0.11719 
No suction 0.68263 1.63059 0.54582 0.27413 0.45646 0.04940 0.1 3850 0.19192 0.00488 

1/RewaPr 0.6944 0.2777 0.13888 
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compared with flow between impermeable walls, except at high 
suction ratios where higher temperatures are observed at the 
exit sections of the duct. 

The average values of the wall temperature as well as the 
overall bulk mean temperature of the fluid leaving the cavity are 
given in Table 4. Increasing the inlet suction ratio from a = 0 has 
no immediate effect on the temperature of the two walls, up to a 
certain value of a, which is dependent on Rewa, where a 
substantial increase is observed. Conversely, increasing Rewa 
decreases the mean temperatures of the two walls and the exit 
fluid temperature. 

Fig 10 presents the effect of nonuniform suction on the local 
Nusselt numbers at the hot porous wall for various wall 
Reynolds numbers. It can be seen that for uniform suction, ie 
a =  1, an asymptotic constant value of Nusselt number 
characterizes the thermally stabilized section. In addition, the 
length of this section decreases as Rewa increases. Conversely for 
nonuniform suction, a - 1, thermal stabilization is not attained. 

Comparing these results with the corresponding ones for heat 
transfer between impermeable walls, it can be seen that all 

combinations of nonuniform and uniform suction produce 
higher heat transfer rates. However, there is an advantageous 
feature for nonuniform suction, especially for a <  1. In this case 
the known decreasing trend of the local Nusselt number with the 
axial distance is superimposed on a linearly increasing function 
due to the suction rate. Consequently, the resultant 
characteristic curve attains a minimum value at some axial 
distance within the duct, but at the exit section very high heat 
transfer rates are established. 

Nonuniform suction changes the flow rate with the axial 
distance, which has a hydrodynamic effect on the convective 
heat transfer. However, the thermal effect of the lateral 
convective heat transfer coefficient is much more dominant. 
This is the reason why the increase in wall Reynolds number is 
characterized by an equivalent increase in the Nusselt number, 
and why with suction rate increasing with the axial distance the 
Nusselt number at the exit section is very high. 

Comparison of the present results with those previously 
published is only possible at uniform suction it . However, since 
Rhee et al ~ ~ did not present the mean fluid temperature which 
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could indicate the accuracy of the results when compared with 
its expected value of 1/Re,vaPr, it is difficult to explain the small 
difference between these results. On the other hand, referring to 
Table 3 it can be seen that the present results are fairly accurate 
and that the accuracy increases with the suction Reynolds 
number. 

For completeness, it is interesting to note that the fully 
developed Nusselt number for semiporous uniform suction flow 
is lower than its equivalent in porous uniform suction flow. For 
Re,a = 5, Pr= 0.72 the fully developed Nusselt number in the 
present investigation is equal to 8.2 compared with 16.51 in 
Ref 7. 

Table 5 Comparison between investigations 

Rewa = 2 Rewa = 10 

Investigation 01AV 02AV 01AV 02AV 

Rhee et a101 0.7153 0.3646 0.1427 0.0085 
Present 0.6474 0.3039 0.1356 0.0067 

Table 6 Average heat losses from the impermeable wall for different 
values of dimensionless heat loss coefficient at Rewa=5 

Average heat losses qLAv/qw 

a Hua=l.0 Hua=10 Hua=50 

0.0 0.022985 0.052543 0.059354 
0.5 0.023839 0.052839 0.059120 
1.0 0.029102 0.061608 0.068269 
1.5 0.045613 0.088316 0.096234 
2.0 0.117914 0.170974 0.179242 
Nosuction 0.037949 0.113162 0.137217 

Impermeable convect ive wa l l  

In this subsection we describe the thermal characteristics of this 
flow when the upper impermeable wall loses heat to a constant- 
temperature atmosphere, which is more realistic in terms of 
engineering applications. For that purpose the Blot number, ie 
the dimensionless heat loss coefficient, varied from I to 50, 
which covers a large range of boundary conditions and 
approaches the extreme case of a fixed-temperature wall. 

Fig 11 presents the ratio of heat losses to the heat input on the 
porous wall versus the axial distance for three inlet suction 
ratios and various heat loss coefficients. At the entrance the heat 
loss is independent of suction ratios. Conversely, at the exit, 
high suction ratios give rise to much higher heat losses that the 
corresponding small suction ratios and, indeed, the no-suction 
case. In fact, if the average heat losses from the impermeable 
wall shown in Table 6 are considered, it can be seen that minimal 
heat loss is attained at zero suction ratio. 

Table 7 shows the effect of wall Reynolds number on the heat 
losses from the impermeable wall. For the results shown in this 
table, heat input to the duct was constant and heat flux varied 
since different channel lengths were chosen to satisfy the 
condition of a closed-ended duct with different suction Reynolds 
numbers. It can be seen that for a < 1, increasing Rewa reduces 
considerably the average heat losses from the cavity and hence 
improves the thermal performance of the flow. However this is 
not true for a > 1. 

The effect of fluid properties was investigated by studying the 
influence of changing the Prandtl number on the thermal 
characteristics. Table 8 presents the average wall temperature 
and exit fluid temperature at various Prandtl numbers for a 
sample of the results at two extreme conditions of adiabatic 
impermeable wall and maximum heat loss condition 
respectively. It can be seen that increasing the Prandtl number 
cools the porous and the impermeable walls and reduces the exit 
fluid temperature. This cooling effect is reflected in a reduction 
of the heat losses from the impermeable wall. At P r =  l0 there is 
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Table 7 Average heat losses from the upper wall for different values of Rewa and a (Re=2000, Pr=0.72, Hua=50) 

Rewa=2 Rewa=5 Rewa=10 

a q LAV 0 MAV q LAV 0 MA V qLAV 0 MAV 

0.0 0.264281 0.503971 0.148385 0.6448 Separation in the velocity field 
1.0 0.286621 0.488329 0.170673 0.63738 0.054045 0.674672 
2.0 0.383744 0.421331 0.448105 0.55995 0.43215 0.619165 

52 Heat and Fluid Flow 



Developing laminar f low in a semiporous two-dimensional channel with nonuniform transpiration: M. M. Sorour et al. 

Table 8 Effect of the Prandtl number on the average fluid and wall 
temperatures (Rewa = 5, a = 1, Hua = 50) 

Pr qLAV 0 MAV 01AV 02AV 

0.1 0.949417 0.976869 0.974777 0.018794 
0.10 0.620450 0.745532 0.7421 90 0.012246 
0.72 0.068269 0.254948 0.253732 0.001327 
1.00 0.029658 0.191201 0.190871 0.000574 
2.00 0.00196 0.098034 0.098568 0.000037 

10.00 0.000000 0.015234 0.015365 0.000000 

(Rewa=5, a= l ,  Hua=0.0) 

Pg 0 MAV 01AV 02AV 

8 Pederson, R. J. and Kinney, R. B. Entrance-region heat transfer 
for laminar flow in porous tubes. Int. J. Heat Mass Transfer 
1971, 14, 159-161 

9 Raithby, G. Laminar heat transfer in the thermal entrance region 
of circular tubes and two dimensional rectangular ducts with 
wall suction and injection. Int. J. Heat Mass Transfer 1971,14(2), 
223-243 

10 Sorour, M. M. and Hassab, M. A. Effect of sucking the hot fluid 
film on the performance of flat plate collector. Appl. Energy 1983, 
14, 161-173 

11 Rhee, S. J. and Edwards, D. K. Laminar entrance flow in a flat 
plate duct with asymmetric suction and heating. Numerical Heat 
Transfer, 1981, 4, 85-100 

0.01 19.691716 17.78520 17.34100 
0.1 1.970325 1.807990 1.406690 
0.72 0.272493 0.267290 0.046380 
5.0 0.037617 0.037935 0.0000 

10.0 0.015239 0.01537 0.0000 

Append ix :  D e m o n s t r a t i o n  t h a t  t h e  t e m p e r a t u r e  of  
the  t ransp i red  f lu id  is equal  to  t h e  w a l l  t e m p e r a t u r e  
f r o m  w h i c h  t r a n s p i r a t i o n  occurs  

no difference between the temperatures of the walls and the fluid 
for the insulated wall case and those for the convective one. 

Therefore, transpiring high Prandtl  number  fluids is 
thermally attractive. In addition, using small inlet suction ratios 
will allow the transpiration of more viscous fluids since the 
suction velocity increases as the viscosity decreases with heating 
downstream in the duct. 

C o n c l u s i o n s  

A finite difference analysis of the forced convective flow between 
a nonporous  and a porous parallel plate with nonuniform 
suction is described. The impermeable plate convects heat to a 
constant-temperature atmosphere and the porous  plate was 
subjected to constant  heat flux. 

Nonuniform suction produces a continuously developing 
flow in the whole length of the duct. Large inlet suction ratio is 
recommended for hydrodynamic applications. The pressure 
recovery encountered under these flow conditions reduces the 
pumping power. In addition, higher permissible wall suction 
Reynolds numbers  can be obtained. On the other hand, for 
heating applications, small inlet suction ratio is recommended. 
Higher heat transfer rates to the working fluid, and lower heat 
losses to the environment,  are encountered in this condition for 
the same heat input, wall Reynolds number  and heat loss 
coefficient. 

R e f e r e n c e s  

1 Yeroshenko, V. M., Zaichik, L. I. and Bakhvalov, B. Yu. Heat 
transfer in laminar plane channel flow with uniform suction or 
injection. Int. J. Heat Mass Transfer 1981, 24(I0), 1649 

2 Donoughe, P. L. Analysis of Laminar Incompressible Flow in 
Semiporous Channels. NACA Tech Note 3795, 1956 

3 Eckert, E. R. G., Donoughe, P. L. and Moore, B. J. Velocity and 
Friction Characteristics of Laminar Viscous Boundary-layer and 
Channel Flow over Surfaces with Injection or Suction. NCA 
Tech Note 41-2, 1957 

4 Horton, T. E. and Yuan, S. W. Laminar flow in the entrance 
region of a porous-wall channel. Appl. Sei. Res. Sec A, 1965, 
14(4), 233-249 

5 Carter, L. F. and Gill, W. N. Asymptotic solution for combined 
free and forced convection in vertical and horizontal conduits 
with uniform suction and blowing. A.1. Ch. E.J. 1964,10(3), 330- 
339 

6 Terrill, R. M. Heat transfer in laminar flow between parallel 
porous plates. Int. J. Heat Mass Transfer 1965, 8, 1491-1497 

7 Tsou, R. C. H. On the linearized analysis of entrance flow in 
heated, porous conduits. Int. J. Heat Mass Transfer 1976, 19, 
445-448 

An alternative form of the energy equation (Eq (4)) is given by 

~(UO) O(VO) 1 ~20 

Integrating Eq (A1) along one section X, from Y = 0 to Y = 1, it 
follows that 

~ - d Y +  d Y -  ~ y ~ d Y  (A2) 
o c~Y Re~aPr 

Carrying out the integration, and using the identity 

o UO d Y= UAvxOMx (A3) 

Eq (A2) gives 

d I Y=* 1 ( ~0"~[ r=x 
~(UAvxOMx)'-[-(VO) r O-- 
or 

d 1 

OI=v~x { R e ~ P r ( ~  y= - - ~  y=o)--~(UAvxOMX) } (A4) 

Now, assuming the temperature of the sucked fluid at 
location X on the porous wall is 0g~, then a heat balance made 
on the control volume shown in Fig A1 gives 

_ K  eT Oy r = o AX + pcpBuAv Ix TM Ix 

= pcpBuAv Ix TM Ix + pcpB ~ (UAv ]~ T M Ix) AX 

-- K ~ v=B AX +pcPVw~ AX(Tg~ - Ti) 

Figure A1 

~ _ _  oy =y=L 

Control volume for heat balance 
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Rearranging, we have 

K OT 0 , c~TI 
-- = pcpB ~x  (uAV x OM x ) -  K ~-y r = B 

+ pcpvw~,(Tgx-- Ti) 

Introducing the dimensionless parameters gives 

• . qwB,, _ p c p B l O f u i U A v x q W B o M x  ~ pcp Vwx VWA K -  vgx = 

K qw B 00 v =0+------KqwBOO]-I 
B K OY B K O~y=j 

Rearranging gives 

K / 00 I 00 
pcpVwA VwxOgX=B (k~ V:l-OY v:o) 

pcpBU i 0 
L c~X (UAvOM)X 

(AS) 

o r  

_ K 00 - ~  r=o LVwA t3X (UAvOM)x VwxOgx pcpBVwA ~ Y= t 

~ O 0 1  d O 1 \  0 
--RewaPr\ff-ylt= 1 - - ~  r = O ) - - ~  (UAvOM)x 

from which, 

1 , (oo I _oo I )_5 UAvO= x} 
Ogx=Vwx(RewaPr \OYlv= , OYIv=o/ OX 

(A6) 

Comparing Eqs (A4) and (A6) shows that 

Ogx = 0 

ie, the temperature of the sucked fluid is equal to the 
temperature of the wall from which suction occurs; this is true at 
any location X on the transpirating wall. 

Book review 

HEAT TRANSFER 1986 Proceedings of the Eighth International Heat 
Transfer Conference 
Eds C. L. Tien, V. P. Carey and J. K. Ferrell in cooperation with the members of the International 
Scientific Committee and the US Scientific Committee 

These proceedings include two plenary papers (one on the 
history of early conferences and the other on appreciation of the 
work of D. G. Fahrenheit), 28 keynote papers by various 
authorities on selected topics, 450 contributed papers, an author 
index, a subject index and a common nomenclature, comprising 
six volumes and 3193 pages. 

Heat transfer is a sufficiently active field to support several 
prestigious journals and annual conferences. Hence, these 
Proceedings of the 8th International Conference are 
representative of current work rather than a compilation of 
work over the four years since the last conference. Even so, the 
quantity, international scope and general high quality of the 
contents makes access to these six volumes sine qua non to 
everyone working in the field of heat transfer. 

The editors, conference committees and the publisher are to 
be commended for carrying out the process of review, selection, 
and publication over a very short span of time, thereby making 
the contents quite timely. The restriction of the contributed 
papers to six pages appears to have resulted in progress reports 
and/or in the omission of essential information in only a few 
instances. The preparation of the printed version on mats by the 
authors resulted in more typographical and other errors than an 
edited journal set in type. Also, a variation from paper to paper 
in type face, contrast and readability is quite evident. 
Fortunately, almost all of the pages fall within the range of 
decipherability. 

The authorship of the keynote papers assures their 
authenticity. As such, they are invaluable as reviews or reports 
on the state of the art. The only disappointment is not to fine one in 
your subject of interest. 

The contributed papers encompass a wider range of quality, 
perhaps as a consequence of a variability in the standards 
imposed by the several independent national committees. One 
might expect to gain some insight into the new directions of 
technology by surveying these papers, but such trends are not 
evident to this reviewer. Indeed, one might infer that the art and 
science of heat transfer are undergoing only a very gradual 
transition. This may imply a period of consolidation in which 
well-established methods of analysis such as machine 

computation, and modern techniques of measurement such as 
laser-Doppler anemometry are being widely applied to 
transform heat transfer from a semi-quantitative field, as 
reflected by log-log plots of widely scattered data, to a 
profession with a pervasive theoretical and a sound 
experimental basis. 

A detailed analysis of content and trends is hardly feasible 
here, but several selective observations are offered as follows. 
Some techniques from other fields are being adapted for 
improved measurement. Research on heating and cooling is 
obviously in at least temporary eclipse. Research is apparently 
interfacial effects, boiling in flow and two-phase convection. 
Nuclear and augmented heat transfer remain popular topics but 
the number of papers on electronic, biological and medical 
aspects of heat transfer is conspicuously and surprisingly small. 

One subtle aspect of the contents is the internationality of 
these volumes. One might classify national contributions by 
their typographical quality but not by their scientific content. 
This group of papers is strong evidence that in heat transfer the 
ideal of 'one world' is now closely approximated. 

The lingering impression of these volumes, on this reviewer, is 
the magnitude and quality of the work. Anyone who has a broad 
interest in heat transfer will be almost overwhelmed by the 
essential task of assimilating this new material. 

The price of the complete set, while not necessarily excessive, 
is a strong incentive to attend the Ninth Conference and thereby 
obtain the proceedings as part of the registration fee. 
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